

FERTILITA' DEL SUOLO

MANTENIMENTO DELLA FERTILITÀ CON L'UTILIZZO DEL COMPOST PRODOTTO IN AZIENDA

Progetto "Azioni Informative e Dimostrative sul territorio Regionale"

FERTILITÀ DEL SUOLO

La fertilità è la capacità di un terreno di produrre piante di interesse agrario e, nel contempo, di mantenere gli ecosistemi biotici e le caratteristiche chimico-fisiche; essa è direttamente correlata alla presenza di *Sostanza Organica (SOM)* nel terreno, la quale è considerata la criticità maggiore da affrontare nei sistemi agrari, soprattutto nel Sud dell'Europa, dove le temperature sono più elevate e a causa dei cambiamenti climatici sono destinate ad aumentare determinando il depauperamento della SOM.

La fertilità rappresenta anche fattore di resilienza alla scarsità d'acqua, alla riduzione dell'uso di concimi minerali e di prodotti fitosanitari.

UN TERRENO FERTILE RACCHIUDE ELEMENTI DI AUTORIGENERAZIONE

L'agricoltura nel dopoguerra, come settore, è stato appannaggio dell' industria chimica. Le molecole di sintesi, se da un lato hanno determinato l'incremento delle rese, dall'altro hanno causato la perdita della struttura e della biodiversità dell'intero "sistema agrario".

La meccanizzazione agricola ha accentuato l'effetto "perdita di fertilità dei suoli. Un suolo agrario è costituito da una frazione minerale (tessitura) e da una frazione organica.

FRAZIONE MINERALE

TESSITURA

Si tratta semplicemente di conoscere la frazione minerale del terreno e le sue dimensioni.

Particelle fini (argilla) < a 2 micron di diametro Particelle medie (limo) da 2 a 50 micron Particelle grosse (sabbia) da 50 a 2000 micron

Le quantità di queste particelle, espresse in percentuale, caratterizzeranno il tipo di terreno e, quindi, le sue caratteristiche fisiche. Le caratteristiche fisiche e non modificabili, rappresentano il punto di partenza della struttura di un terreno agrario.

TERRENI ARGILLOSI

- si definiscono terreni argillosi quelli dove la frazione, costituita da particelle fini, supera il 25% in volume
- · sono terreni che sono dotati di una struttura intrinseca, dovuta alla loro costituzione
- questi terreni "pesanti "hanno una buona capacità di trattenuta dell'acqua, ma una scarsa aereazione quindi risultano poco ospitali per la maggior parte delle radici delle piante
- molto difficili da lavorare con le macchine, anche se è l'unico modo per rompere le zolle che si formano dopo un periodo di siccità.

TERRENI SABBIOSI

- · sono definiti anche "destrutturati o sciolti"
- hanno una buona capacità per l'aria, quindi tutti i processi biotici possono svolgersi agevolmente
- non hanno nessuna capacità di trattenuta dell'acqua e quindi dei Sali disciolti in essa
- i processi ossidativi, a carico della sostanza organica, sono accelerati.

TERRENI DI MEDIO IMPASTO

- · Sono terreni con una presenza equilibrata delle varie frazioni (argillose, limose e sabbiose) ma questo stato, pur creando la giusta presenza di spazi vuoti per il passaggio dell'acqua e dell'aria, non rappresenta la condizione ideale da un punto di vista agronomico se non è presente la quantità necessaria di frazione umica
- Un terreno di medio impasto, con una quantità soddisfacente (circa il 5%) di dotazione umica, diventa un terreno ideale per la coltivazione.

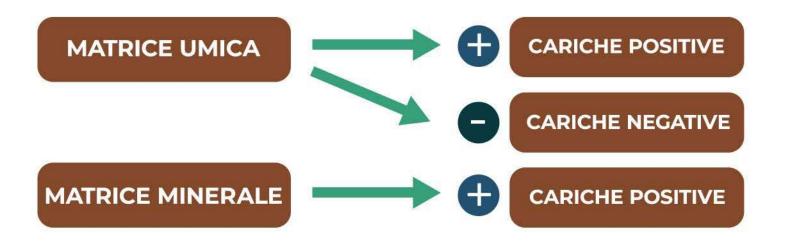
SOSTANZA ORGANICA O SOM (SOIL ORGANIC MATTER)

E' costituita da:

- 1. Biomasse vegetali, animali e microbiche
- Necromasse integre o in fase di decomposizione
 Humus

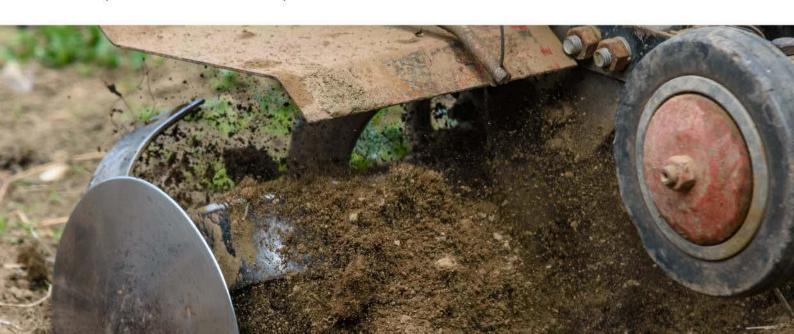
La **SOM** è considerata tra i più importanti indicatori di qualità del suolo, infatti rappresenta il substrato nutritivo ed energetico per gli organismi del suolo ed una fonte di nutrienti per le piante

SOSTANZA ORGANICA HUMUS


- · l' humus rappresenta la fase stabile e più attiva della SOM dal punto di vista fisico e chimico, influenza più o meno direttamente una parte consistente della chimica del suolo ed è in stretta relazione con l'assorbimento degli elementi nutritivi
- attraverso i processi di umificazione e mineralizzazione, l'humus è in equilibrio con la sostanza organica del terreno
- · influenza la chelazione di elementi micronutritivi e la detossificazione dai metalli pesanti

STRUTTURA

- · la struttura rappresenta la formazione di aggregati stabili di diverse dimensioni costituiti da: minerali argillossi, argillo-limosi e macromolecole umiche
- questi elementi di origine diversa sono uniti da ponti Ca++ o dalle stesse particelle umiche o dalla microflora decomponente del terreno (es. miceli fungini)
- più stabili sono i ponti più il terreno può definirsi strutturato, cioè capace di essere permeabile alle soluzioni: acquosa e gassosa e, quindi, di permettere gli scambi minerali tra particelle e cellule radicali (C.S.C. Capacità di Scambio Cationico e cioè la capacità del terreno a trattenere o rilasciare cationi).


STRUTTURA E SCAMBI IONICI

- · la natura chimica di questi aggregati è quella colloidale.
- i **colloidi** sono intrinsecamente stabili, di dimensioni superiori a quelle di una soluzione ma inferiori a quelli di una sospensione, visibili solo con un ultramicroscopio.
- · i colloidi sono di matrice **ORGANICA** e **MINERALE** e dotati di carica elettrica.

STRUTTURA E SUE MODIFICHE

- la struttura, anche se costituita da elementi eterogenei con legami stabili, subisce nel tempo modifiche irreversibili ad opera di agenti destrutturanti che sono di origine: fisica, chimica e antropica.
- · destrutturanti fisici: precipitazioni violente, alte temperature, ecc.
- destrutturanti chimici: concimi minerali capaci di disgregare i ponti umico-minerali, legandosi ad essi
- destrutturanti antropici: uso frequente di macchine, in particolare frese ed erpici (altamente destrutturanti)

STRUTTURA

- I suoli tendenzialmente argillosi che posseggono una struttura intrinseca sono molto suscettibili alle lavorazioni meccaniche, difatti esse devono essere praticate quando il terreno è in tempera, ma comunque ridotte quando la dotazione organica non è sufficiente
- Si può facilmente intuire che la struttura del terreno è determinante a far circolare le soluzioni idro-salina e gassosa e a mettere a disposizione il maggior numero di interfacce (siti di scambio) per gli ioni minerali.

FERTILITÀ

- rappresenta la capacità del terreno di permettere a tutte le specie edafiche e alle piante (spontanee e coltivate) di nutrirsi
- la nutrizione è data sia dalla presenza delle molecole organiche in decomposizione di cui tutte le specie edafiche si nutrono e delle molecole minerali che devono essere presenti e disponibili per le cellule radicali delle piante coltivate
- ovviamente se il suolo è ricco di S.O.M. e le specie edafiche lavorano incessantemente,
 la disponibilità dei Sali minerali è sempre assicurata soprattutto quando il terreno è dotato di una buona struttura.

FERTILITÀ E CONCIMAZIONE MINERALE

- la concimazione minerale è comunque necessaria per reintegrare gli asporti dovuti alle produzioni agricole e può essere notevolmente ridotta se il terreno presenta una buona struttura e dotazione umica
- l'apporto minerale della concimazione si aggiunge a quello presente nel suolo risultante dalla mineralizzazione della sostanza organica, con il vantaggio di poter essere stoccato ed utilizzato in periodi di maggiore necessità per le piante coltivate

COMPOST

E' un ammendante capace di migliorare le caratteristiche fisico-chimiche del terreno ed è l'unico prodotto atto a migliorare la struttura del terreno agrario.

In azienda, utilizzando gli scarti delle parti legnose dei vegetali come i residui di potatura, opportunamente biotriturati, gli sfalci, i residui della lavorazione dei prodotti agricoli, frutta e ortaggi marcescenti, deiezioni e liquami degli allevamenti, si può ottenere un compost di qualità. Il processo di trasformazione e stabilizzazione avviene in una compostiera di facile realizzazione anche con materiali riciclati.

COMPOST

Per ottenere il compost è necessario mescolare le giuste proporzioni tra le 2 componenti: strutturante e umida.

- 35-40% frazione strutturante (carboniosa)
 residui di potatura (esenti da microrganismi patogeni) biotriturati, sfalci di vegetali secchi, paglie etc
- 60-65% frazione umida (azotata) frutta marcescente o di scarto, sfalci verdi, etc.

AMMENDANTE COMPOSTATO VERDE

DLG. DEL 29.04.2010 N. 75

Prodotto ottenuto attraverso un processo di trasformazione e stabilizzazione controllato di rifiuti organici che possono essere costituiti da scarti della manutenzione del verde ornamentale, altri materiali vegetali come sansa vergini (disoleate o meno) od esauste, residui delle colture, altri rifiuti di origine vegetale.

AMMENDANTE COMPOSTATO VERDE

DLG. DEL 29.04.2010 N. 75

Prodotto ottenuto attraverso un processo di trasformazione e stabilizzazione controllato di rifiuti organici che possono essere costituiti da scarti della manutenzione del verde ornamentale, altri materiali vegetali come sansa vergini (disoleate o meno) od esauste, residui delle colture, altri rifiuti di origine vegetale.

AGRICOLTURA | INFORMAZIONE | DIMOSTRAZIONE IN CALABRIA

A.R.S.A.C.

Azienda Regionale per lo Sviluppo dell'Agricoltura Calabrese Viale Trieste, 95 - 87100 Cosenza

Email: info@arsac.calabria.it

Phone: +39 0984 6831 Fax: +39 0984 683296 www.arsac.calabria.it

www.arsacweb.it

Pubblicazione realizzata nell'ambito del Progetto "Azioni informative e dimostrative sul territorio regionale" finanziato dal FEASR – Misura 1, Intervento 1.2.1 del PSR Calabria 2014/2022